
Simulink® Test™

User’s Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ User's Guide
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release 2015a)
September 2015 Online only Revised for Version 1.1 (Release 2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Test Strategies
1

Functional Testing in Verification . 1-2

Requirements-Based Test Cases . 1-3

Test Harness
2

Test Harness and Model Relationship 2-2
Test Harness Description . 2-2
Harness / Model Relationship for a Model Component 2-3
Harness / Model Relationship for a Top-Level Model 2-4
Resolving Parameters . 2-5

Considerations and Limitations . 2-6
Test Harness . 2-6
Test Sequence Block . 2-7

Select Test Harness Properties for Your Task 2-8
Create a Test Harness . 2-8
Considerations for Selecting Test Harness Properties 2-8
Choosing Sources and Sinks . 2-8
Use Separate Assessment Block . 2-9
Initial Harness Configuration . 2-9
Verification Modes . 2-10
Change Harness Properties . 2-11

Test Harness Parameters and Signals 2-12
Test Harness Generation Without Compilation 2-12
Signal Conversion Subsystem . 2-12

iv Contents

Refine, Test, and Debug a Subsystem 2-14
Model and Requirements . 2-14
Create a Harness for the Controller 2-16
Inspect and Refine the Controller . 2-18
Add a Test Case and Test the Controller 2-19
Debug the Controller . 2-20

Manage Test Harnesses . 2-23
Preview and Open a Test Harness 2-23
Find Test Cases Associated with a Test Harness 2-24
Delete All Test Harnesses in a Model 2-24
Convert Test Harnesses Into Separate Models 2-25
Clone and Export a Test Harness to a Separate Model 2-27

Synchronize Changes Between Test Harness and Model . . 2-30
Maintain SIL or PIL Block Fidelity 2-30
Synchronize Changes to the Component Under Test 2-30
Rebuild Test Harness . 2-31
Update Parameters from Test Harness to Model 2-31

Test Sequences and Assessments
3

Introduction to Test Sequences . 3-2
Structure of a Test Sequence . 3-2
Test Sequence Hierarchy . 3-2
Step Transitions . 3-2
Create a Basic Test Sequence . 3-3

Organize Test Sequences . 3-8

Evaluate Temporal or Signal Conditions in a Test Sequence
Transition . 3-11

Generate Function-Based Test Signals 3-14

Debug a Test Sequence . 3-19
View Test Step Execution During Simulation 3-19
Set Breakpoints to Enable Debugging 3-19
View Data Values During Simulation 3-20

v

Step Through Simulation . 3-21

Test a Model Component Using Signal Functions 3-22
Create a Test Sequence . 3-22
Simulate the Test Harness . 3-24

Test Downshift Points of a Transmission Controller 3-26

Reuse Test Assessments . 3-32
Reuse Test Assessments Using a Library 3-32

Test Harness Software- and Processor-in-the-Loop
4

SIL Verification for a Subsystem . 4-2
Create a SIL Verification Harness for a Controller 4-3
Configure and Simulate a SIL Verification Harness 4-5
Compare the SIL Block and Model Controller Outputs 4-5

Simulink Test Manager Introduction
5

Introduction to the Test Manager . 5-2
Test Manager Description . 5-2
Test Creation and Hierarchy . 5-2
Test Results . 5-3
Share Results . 5-3

Test Manager Test Cases
6

Test Model Output Against a Baseline 6-2
Create the Test Case . 6-2
Run the Test Case and View Results 6-3

vi Contents

Test a Simulation for Run-Time Errors 6-6
Configure the Model . 6-6
Create the Test Case . 6-7
Run the Test Case . 6-7
View Test Results . 6-8

Generate Test Cases from Model Components 6-9
Generate the Test Cases . 6-9
Synchronize Test Cases . 6-10

Use External Inputs in Test Cases . 6-13
Use MAT-File for Inputs . 6-13
Use Microsoft Excel File for Inputs 6-13

Automate Tests Programmatically . 6-16
List of Functions and Classes . 6-16
Create and Run a Test Case . 6-17

How Tolerances Are Applied to Test Criteria 6-19
Modify Criteria Tolerances . 6-19

Test Manager Limitations . 6-20
Simulation Mode . 6-20
Callback Scripts . 6-20
Protected Models . 6-20

Test Case Sections . 6-21
Description . 6-22
Requirements . 6-22
System Under Test . 6-22
Parameter Overrides . 6-23
Callbacks . 6-24
Inputs . 6-25
Outputs . 6-25
Configuration Settings . 6-25
Simulation 1 and Simulation 2 . 6-25
Equivalence Criteria . 6-25
Baseline Criteria . 6-26

Test Models Using Inputs Generated by Simulink Design
Verifier . 6-27

Overall Workflow . 6-27
Test Case Generation Example . 6-28

vii

Test Manager Results and Reports
7

View Test Case Results . 7-2
View Results Summary . 7-2
Visualize Test Case Simulation Output and Criteria 7-4

Export Test Results and Generate Reports 7-9
Export Results . 7-9
Create a Test Results Report . 7-10
Generate Report Using Microsoft Word Template 7-10

Results Sections . 7-13
Summary . 7-14
Test Requirement . 7-14
Errors . 7-15
Logs . 7-15
Notes . 7-15
Parameter Overrides . 7-15

1

Test Strategies

• “Functional Testing in Verification” on page 1-2
• “Requirements-Based Test Cases” on page 1-3

1 Test Strategies

1-2

Functional Testing in Verification

Model verification seeks to demonstrate that the “design is right,” that is, that the model
meets the design requirements and conforms to standards. Model verification activities
include property proving, model coverage measurement, requirements tracing, and
functional testing.

Functional testing can be used across the model development cycle, and across levels of
model complexity. An effective approach is to start with lower-level functional units and
work up the model hierarchy to the system level. In functional testing, you simulate the
model with one or more test cases and compare the result to expectations. Each test case
includes inputs to the component under test, expected outputs, and test assessments.
Rigorous functional testing maps each test case to a model requirement. Building up
suites of test cases increases the range of requirements for which the model can be shown
to behave as expected.

Functional testing can be used to:

• Test the model as it is being developed.
• Debug the model after completion.
• Check that the model does not regress.

Common methods of generating test inputs include logging signals from your model,
writing test vectors based on requirements, or generating test cases using Simulink®

Design Verifier™. You can define expected outputs using timeseries data and/or model
assessments such as assertions. The goal is to provide a conclusive pass or fail result for
your test.

 Requirements-Based Test Cases

1-3

Requirements-Based Test Cases

Model development begins with detailed requirements that define the system behavior.
A well-designed model satisfies requirements without extraneous functionality. Since
requirements specify behavior in response to particular conditions, you can build test
cases (test inputs, expected outputs, and assessments) from the model requirements. Test
cases reproduce specific conditions using test inputs, and assess the actual model output
against the expected outputs.

Some requirements apply to multiple test cases. When you create assessments to check
such broad requirements, make the assessments reusable. Reusable assessments allow
you to manage the same source in multiple test harnesses.

As you develop the model, build test files that check system behavior and link them
to corresponding requirements. By defining these test cases in test files, you can
periodically check your model and archive results to demonstrate model stability.

Related Examples
• “Organize Test Sequences” on page 3-8

1 Test Strategies

1-4

• “Reuse Test Assessments” on page 3-32
• “Requirements-Based Testing for Model Development”

2

Test Harness

• “Test Harness and Model Relationship” on page 2-2
• “Considerations and Limitations” on page 2-6
• “Select Test Harness Properties for Your Task” on page 2-8
• “Test Harness Parameters and Signals” on page 2-12
• “Refine, Test, and Debug a Subsystem” on page 2-14
• “Manage Test Harnesses” on page 2-23
• “Synchronize Changes Between Test Harness and Model” on page 2-30

2 Test Harness

2-2

Test Harness and Model Relationship

In this section...

“Test Harness Description” on page 2-2
“Harness / Model Relationship for a Model Component” on page 2-3
“Harness / Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5

Test Harness Description

A test harness is a model block diagram that you can use to develop, refine, or debug a
Simulink model or component. In the main model, you associate a harness with a model
component or the top-level model. The test harness contains a separate model workspace
and configuration set, yet it persists with the main model and can be accessed via the
model canvas.

You build the test harness model around the component under test, which links the
harness to the main model. If you edit the component under test in the harness, the main
model updates when you close the harness. You can generate a test harness for:

• A model component, such as a subsystem. The test harness isolates the component,
providing a separate simulation environment from the main model.

• A top-level model. The component under test is a Model block referencing the main
model.

 Test Harness and Model Relationship

2-3

Harness / Model Relationship for a Model Component

When you associate a test harness with a model component, the harness model
workspace contains copies of parameters associated with the component.

This example shows a test harness for a component that contains a Gain block. The
harness model workspace contains a copy of the parameter g because g defines a part of
the component.

The parameter h is the gain of a gain block in the harness, outside the component under
test (CUT). h exists only in the harness model workspace.

2 Test Harness

2-4

Harness / Model Relationship for a Top-Level Model

When you associate a harness with the top level of the main model, the harness model
workspace does not contain copies of parameters relevant to the component. The
component under test is a Model block referencing the main model, and parameters
remain in the main model workspace. In this example, the component under test
references the main model, and the variable g exists in the main model workspace. The
variable h is the value of the Gain block in the harness. It exists only in the harness
model workspace.

 Test Harness and Model Relationship

2-5

Resolving Parameters

Parameters in the test harness resolve to the most local workspace. Parameters resolve
to the harness model workspace, then the system model workspace, then the base
MATLAB® workspace.

More About
• “Componentization Guidelines”

2 Test Harness

2-6

Considerations and Limitations

In this section...

“Test Harness” on page 2-6
“Test Sequence Block” on page 2-7

Consider these behaviors and limitations when working with a test harness or Test
Sequence block.

Test Harness

• You can open only one test harness at a time per main model.
• Models in MDL format do not support test harness creation. Convert MDL models to

SLX format to use test harnesses. Also, SLX models cannot be saved in MDL format.
See “Upgrade Model Files to SLX and Preserve Revision History” in the Simulink
documentation.

• Do not comment out the component under test in the test harness. Commenting out
the component under test can cause unexpected behavior.

• Requirements linking is not supported for blocks or other objects in test harness
models. If you have a Simulink Verification and Validation™ license, you can link
requirements to test cases in the test manager. See “Requirements” on page 6-22.

• If a subsystem has a test harness, you cannot expand the subsystem. Delete all test
harnesses before expanding the subsystem.

• Test harnesses are not supported for blocks underneath a Stateflow® object.
• For a library, a test harness can only be created for an active top-level library link.
• Test harnesses do not support asynchronous sample times.
• Upgrade advisor and XML differencing are not supported for test harness models.
• A test harness with a Signal Builder block source does not support:

• Frame-based signals
• Complex signals
• Variable-dimension signals
• Arrays of buses

• For a test harness with a Test Sequence block source, all inputs to the component
under test must operate with the same sample time.

 Considerations and Limitations

2-7

Test Sequence Block

• HDL code generation is not supported for the Test Sequence block.
• Code generation reports do not display Test Sequence block contents.
• Requirements linking is not supported from the Test Sequence Editor.
• The Test Sequence Editor changes the following syntax automatically:

• Duplicate test step names. For example, if step_1 already exists, and you change
another step name to step_1, the step name you change automatically changes to
step_2.

• Increment and decrement operations to use MATLAB as the action language, such
as a++ and a--. For example, a++ is changed to a=a+1.

• Assignment operations to use MATLAB as the action language, such as a+=expr,
a–=expr, a*=expr, and a/=expr. For example, a+=b is changed to a=a+b.

• Evaluation operations to use MATLAB as the action language, such as a!=expr
and !a. For example, a!=b is changed to a~=b.

• The editor inserts explicit casts for literal constant assignments. For example, if y
is defined as type single, then y=1 is changed to y=single(1).

2 Test Harness

2-8

Select Test Harness Properties for Your Task

In this section...

“Create a Test Harness” on page 2-8
“Considerations for Selecting Test Harness Properties” on page 2-8
“Choosing Sources and Sinks” on page 2-8
“Use Separate Assessment Block” on page 2-9
“Initial Harness Configuration” on page 2-9
“Verification Modes” on page 2-10
“Change Harness Properties” on page 2-11

Create a Test Harness

Create the test harness and set the harness properties using the Create Test Harness
dialog box. Highlight the subsystem you want to create the harness for, or highlight no
blocks to create a harness for the top-level model. From the menu, select Analysis >
Test Harness > Create Test Harness.

Considerations for Selecting Test Harness Properties

Before selecting test harness properties, consider the following:

• What data source you want to use for your test case input
• How you want to view or store test results
• Whether you want to copy parameters and workspaces from the main model to the

harness
• Whether you plan to edit the component under test
• How you want to synchronize changes between the test harness and model

You can set sources and sinks only during harness creation. You can set the other
properties when you create the harness or change them after you create the harness.

Choosing Sources and Sinks

In the Create Test Harness dialog box, under Sources and Sinks, select the source and
sink from the respective menus. Select a Test Sequence block source to use outputs of the

 Select Test Harness Properties for Your Task

2-9

component under test as inputs to the test case. You can build a test harness using blocks
from the Simulink Sources or Sinks library. Select Custom source or sink, and entering
the path to the custom block, such as:

simulink/Sources/Sine Wave

simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

Use Separate Assessment Block

A standalone Test Assessment block can be useful if you want to reuse the same
assessments in multiple test harnesses. To build your harness with a separate block,
click Use separate assessment block.

You can also write test assessments directly in the Test Sequence block.

Initial Harness Configuration

You can select a preconfigured set of test harness properties for common tasks.

• Prototyping: Choose this configuration if your model is early in development. You
can edit the component under test in the test harness, and control when the harness
is rebuilt from the main model. You can use this configuration if your main model
does not compile.

• Refinement/Debugging: Choose this configuration if you want the test harness to
include the configuration set, conversion subsystems, and model parameters for the
component under test. This configuration can be useful for a nearly complete model,
when you expect limited changes to the design.

• Verification: Choose this configuration if you require high fidelity between the
main model and the test harness, which is common for model verification. The test
harness prevents you from editing the component under test, and the test harness
rebuilds every time you open it. In addition to a normal subsystem, you can choose
a SIL or PIL block as the component under test (requires Embedded Coder®). See
“Verification Modes” on page 2-10.

You can also select a custom combination of harness properties. When you select Custom,
these options become available:

2 Test Harness

2-10

Property Description Additional Information

Create without
compiling the
model

When you select this property,
the main model does not compile
when generating the test harness.
The test harness does not contain
conversion subsystems, configuration
parameters, or model workspace data
for the component under test.

The test harness might
require additional
modification for it to
compile, such as adding
signal conversion blocks.

Rebuild harness on
open

When you select this property, the
test harness rebuilds every time you
open it.

For details on the rebuild
process, see “Synchronize
Changes Between Test
Harness and Model” on
page 2-30.

Update
Configuration
Parameters and
Model Workspace
data on rebuild

When you select this property,
configuration parameters and model
workspace data update when you
rebuild the harness.

For details on the rebuild
process, see “Synchronize
Changes Between Test
Harness and Model” on
page 2-30.

Enable component
editing in harness
model

When you select this property, you
can edit the component under test in
the test harness.

Verification Modes

The test harness verification mode determines the type of block generated in the test
harness.

• Normal: A Simulink block diagram (model in the loop).
• SIL: The component under test references generated code, operating as software-in-

the-loop. Requires Embedded Coder.
• PIL: The component under test references generated code for a specific processor

instruction set, operating as processor-in-the-loop. Requires Embedded Coder.

Note: Keep the SIL or PIL code in the test harness synchronized with the latest
component design. If you select SIL or PIL verification mode without selecting Rebuild
harness on open, your SIL or PIL block code might not reflect recent updates to the

 Select Test Harness Properties for Your Task

2-11

main model design. Regenerate code for the SIL or PIL block in the test harness by
selecting Analysis > Test Harness > Rebuild Harness from Main Model.

Change Harness Properties

Click the badge in the test harness block diagram and click Test harness
properties... to open the harness properties dialog box.

See Also
Test Sequence | “Synchronize Changes Between Test Harness and Model” on page
2-30

2 Test Harness

2-12

Test Harness Parameters and Signals

In this section...

“Test Harness Generation Without Compilation” on page 2-12
“Signal Conversion Subsystem” on page 2-12

Test Harness Generation Without Compilation

You can generate a test harness without compiling the main model. For example, this
option can be useful if you are prototyping a design that cannot yet compile. If the main
model is not compiled when generating a test harness:

• Parameters are not copied to the test harness workspace.
• The main model configuration is not copied to the test harness.
• The test harness does not contain conversion subsystems.

To execute these processes, you can rebuild the harness when you are ready to compile
the main model. For more information, see “Synchronize Changes Between Test Harness
and Model” on page 2-30.

Signal Conversion Subsystem

A signal conversion subsystem contains signal specification blocks to check signal
properties to and from the component under test, such as:

 Test Harness Parameters and Signals

2-13

• Data type
• Sample time
• Bus properties
• Dimension
• Complexity

Like the main model, a test harness does not compile if the signal types do not match the
signal specification. If you get a compile error related to the signal conversion subsystem,
check the signal properties and modify the test harness design if necessary. For example:

• You can add conversion blocks to your test harness outside the conversion subsystem.
• You can edit the conversion subsystem. The subsystem is locked by default. To

unlock it, right-click the subsystem, select Block Parameters, then set Read/Write
permissions to ReadWrite.

Note: When you rebuild the test harness, the signal conversion subsystems are
rebuilt. Changes made to the conversion subsystems are lost.

2 Test Harness

2-14

Refine, Test, and Debug a Subsystem

In this section...

“Model and Requirements” on page 2-14
“Create a Harness for the Controller” on page 2-16
“Inspect and Refine the Controller” on page 2-18
“Add a Test Case and Test the Controller” on page 2-19
“Debug the Controller” on page 2-20

Test harnesses provide a development and testing environment that leaves the main
model design intact. You can test a functional unit of your model in isolation without
altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air
conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements

1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

 Refine, Test, and Debug a Subsystem

2-15

In the example model:

• The controller accepts the room temperature and the set temperature inputs.
• The controller output is a bus with signals controlling the fan, heat pump, and the

direction of the heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean,

and the heat pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

2 Test Harness

2-16

Temperature condition System state Fan
command

Pump
command

Pump
direction

|Troom - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom

- Tset| < DeltaT_pump

fan only 1 0 0

|Troom - Tset| <

DeltaT_pump and Tset < Troom

cooling 1 1 -1

|Troom - Tset| <

DeltaT_pump and Tset >Troom

heating 1 1 1

Create a Harness for the Controller

1 Right-click the Controller subsystem and select Test Harness > Create Test
Harness (Controller).

2 Set the harness properties:

• Name: devel_harness_1
• Sources and Sinks: None and Scope
• Initial harness configuration: Refinement/Debugging
• Select Open harness after creation.

 Refine, Test, and Debug a Subsystem

2-17

3 Click OK to create the test harness.

2 Test Harness

2-18

Inspect and Refine the Controller

1 Double-click Controller to open the subsystem.

2 Notice that the state chart is disconnected from its ports. Fix this issue by connecting
the chart as shown.

 Refine, Test, and Debug a Subsystem

2-19

3 In the harness, click the save button in the toolbar to save the harness and model.

Add a Test Case and Test the Controller

1 Navigate to the top level of devel_harness_1.
2 Create a test case for the harness with a constant Tset and a time-varying Troom.

Connect a Constant block to the Tset input and set the value to 75.
3 Add a Sine Wave block to the harness model to simulate a temperature signal.

Connect the Sine Wave block to the conversion subsystem input Troom_in.
4 Double-click the Sine Wave block and set the parameters:

• Amplitude: 15
• Bias: 75
• Frequency: 2*pi/3600
• Phase (rad): 0
• Sample time: 1
• Select Interpret vector parameters as 1–D.

2 Test Harness

2-20

5 In the Configuration Parameters dialog box, in the Data Import/Export pane,
select Input and enter u. u is an existing structure in the MATLAB base workspace.

6 In the Solver pane, set Stop time to 3600.
7 Open the three scopes in the harness model.
8 Simulate the harness.

Debug the Controller

1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |
Troom - Tset| < DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be
changed for IDLE.

 Refine, Test, and Debug a Subsystem

2-21

2 In the harness model, open the Controller subsystem.
3 Open controller_chart.
4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return 0. IDLE is

now:

IDLE

entry:

fan_cmd = 0;

 pump_cmd = 0;

 pump_dir = 0;

5 Simulate the harness model again and observe the outputs.

6 fan_cmd now meets the requirement to equal 0 at IDLE.

2 Test Harness

2-22

Related Examples
• “Test a Model Component Using Signal Functions” on page 3-22
• “Test Downshift Points of a Transmission Controller” on page 3-26

 Manage Test Harnesses

2-23

Manage Test Harnesses
In this section...

“Preview and Open a Test Harness” on page 2-23
“Find Test Cases Associated with a Test Harness” on page 2-24
“Delete All Test Harnesses in a Model” on page 2-24
“Convert Test Harnesses Into Separate Models” on page 2-25
“Clone and Export a Test Harness to a Separate Model” on page 2-27

Preview and Open a Test Harness

When a model component has a test harness, a badge appears in the lower right of the
block. Click the badge to preview test harnesses, and click a thumbnail image to open the
harness.

When a model block diagram has a test harness, click the pullout icon in the model
canvas to preview the test harnesses. Click a thumbnail to open the harness

2 Test Harness

2-24

Find Test Cases Associated with a Test Harness

To list open test cases that refer to the test harness, click the badge in the test
harness canvas. You can click a test case name and navigate to the test case in the test
manager.

Delete All Test Harnesses in a Model

You can delete a harness manually, using the harness thumbnail. You can also delete
harnesses programmatically, which can reduce effort when your model has harnesses at
different hierarchy levels. This example demonstrates creating four test harnesses for a
model and deleting them.

1 Open the model.

open_system('sf_car');

2 Enter the following at the command line to create two harnesses for the
transmission subsystem and two harnesses for the transmission ratio
subsystem.

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission/transmission ratio');

Simulink.harness.create('sf_car/transmission/transmission ratio');

3 Find the harnesses in the sf_car model.

 Manage Test Harnesses

2-25

test_harness_list = Simulink.harness.find('sf_car')

test_harness_list =

1x4 struct array with fields:

 model

 name

 description

 type

 ownerHandle

 ownerFullPath

 ownerType

 isActive

 canBeActivated

 lockMode

 verificationMode

 saveIndependently

 rebuildOnOpen

 rebuildModelData

4 Delete the harnesses.

for k = 1:length(test_harness_list)

 Simulink.harness.delete(test_harness_list(k).ownerFullPath,...

 test_harness_list(k).name)

end

Convert Test Harnesses Into Separate Models

You can convert a test harness block diagram to a separate model, which is useful if
you have completed testing but want to preserve the harness design. Select File >
Export Model to > Independent Model For Test Harness. The harness converts to
a separate model containing the blocks from your test harness. Converting removes the
harness from your model and breaks the link to the main model.

You can also convert harnesses into separate models programmatically. Programmatic
conversion can be useful for handling test harnesses at different hierarchy levels, or for
clearing test harnesses from a model without losing the harness designs. This example
demonstrates creating four test harnesses for a model and exporting them to separate
models.

1 Open the model.

2 Test Harness

2-26

open_system('sf_car');

2 Enter the following at the command line to create two harnesses for the
transmission subsystem and two harnesses for the transmission ratio
subsystem.

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission');

Simulink.harness.create('sf_car/transmission/transmission ratio');

Simulink.harness.create('sf_car/transmission/transmission ratio');

3 Find the harnesses in the sf_car model.

test_harness_list = Simulink.harness.find('sf_car')

test_harness_list =

1x4 struct array with fields:

 model

 name

 description

 type

 ownerHandle

 ownerFullPath

 ownerType

 isActive

 canBeActivated

 lockMode

 verificationMode

 saveIndependently

 rebuildOnOpen

 rebuildModelData

4 Convert the harnesses into new, separate models. The main model must be saved
before each export operation.

save_system('sf_car');

for k = 1:length(test_harness_list)

 Simulink.harness.export(test_harness_list(k).ownerFullPath,...

 test_harness_list(k).name,'Name',['test_harness_',num2str(k)]);

 save_system('sf_car');

end

 Manage Test Harnesses

2-27

Clone and Export a Test Harness to a Separate Model

This example demonstrates cloning an existing test harness and exporting the cloned
harness to a separate model. This can be useful if you want to create a copy of a test
harness as a separate model, but leave the test harness associated with the model
component.

High-level Workflow

1 If you don't know the exact properties of the test harness you want to clone, get them
using sltest.harness.find. You need the harness owner ID and the harness name.

2 Clone the test harness using sltest.harness.clone.
3 Export the test harness to a separate model using sltest.harness.export. Note that

there is no association between the exported model and the original model. The
exported model stands alone.

Open the Model and Save a Local Copy

Model = 'sltestTestSequenceExample';

open_system(Model)

Save the local copy in a writable location on the MATLAB path.

2 Test Harness

2-28

Get the Properties of the Source Test Harness

Properties = sltest.harness.find([Model '/shift_controller'])

Properties =

 model: 'sltestTestSequenceExample'

 name: 'controller_harness'

 description: ''

 type: 'Testing'

 ownerHandle: 12.0013

 ownerFullPath: 'sltestTestSequenceExample/shift_controller'

 ownerType: 'Simulink.SubSystem'

 isOpen: 0

 canBeOpened: 1

 lockMode: 0

 verificationMode: 0

 saveIndependently: 0

 rebuildOnOpen: 0

 rebuildModelData: 0

 graphical: 0

 origSrc: 'Test Sequence'

 origSink: 'Test Assessment'

Clone the Test Harness

Clone the test harness using sltest.harness.clone, the ownerFullPath and the name
fields of the harness properties structure.

sltest.harness.clone(Properties.ownerFullPath,Properties.name,'ControllerHarness2')

Save the Model

Before exporting the harness, save changes to the model.

save_system(Model)

Export the Test Harness to a Separate Model

Export the test harness using sltest.harness.export. The exported model name is
ControllerTestModel.

sltest.harness.export([Model '/shift_controller'],'ControllerHarness2','Name','ControllerTestModel')

open_system('ControllerTestModel')

clear('Model');

 Manage Test Harnesses

2-29

bdclose all;

See Also

Functions
sltest.harness.clone | sltest.harness.create | sltest.harness.delete
| sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open

2 Test Harness

2-30

Synchronize Changes Between Test Harness and Model

In this section...

“Maintain SIL or PIL Block Fidelity” on page 2-30
“Synchronize Changes to the Component Under Test” on page 2-30
“Rebuild Test Harness” on page 2-31
“Update Parameters from Test Harness to Model” on page 2-31

A test harness lets you synchronize changes between the test harness and the main
model. You can transfer a configuration set and model workspace variables, update the
component design, and rebuild the harness to reflect the latest model design. These
abilities provide an advantage over isolating a model component in a separate Simulink
model.

Maintain SIL or PIL Block Fidelity

If you use a software-in-the-loop (SIL) or processor-in-the-loop (PIL) block in the test
harness, regularly rebuild your test harness so that the generated code referenced by
the SIL/PIL block reflects the current main model. You can set a test harness to rebuild
every time it opens. Open the test harness properties dialog box by clicking the test

harness badge in the harness model and select Rebuild harness on open.

To minimize compilation, you can manually rebuild the test harness if you have a large
or complex main model. You can check the SIL/PIL block equivalence to determine
whether to rebuild the harness. In the harness model, from the menu bar, select
Analysis > Test Harness > Compare Checksums, which compares the checksum
of the component in the model to the checksum archived during the SIL/PIL block
generation. If the result is different, rebuild the harness by clicking Analysis > Test
Harness > Rebuild Harness from Main Model.

For information about running multiple simulations with unchanged generated code, see
“Prevent Code Changes in Multiple SIL and PIL Simulations”.

Synchronize Changes to the Component Under Test

The component in the harness or the main model updates to the latest design when you
open or close a test harness:

 Synchronize Changes Between Test Harness and Model

2-31

• Design changes from model to harness — The component under test updates when
you open the harness.

• Design changes from harness to model — The component in the model updates when
you close the harness.

Note: If you create a test harness in SIL or PIL mode for a Model block, the block mode
in the test harness is changed to SIL or PIL, respectively. This mode is not updated to
the main model when you close the test harness.

Rebuild Test Harness

You can rebuild a test harness to reflect the latest state of the main model. In the test
harness, select Analysis > Test Harness > Rebuild Harness from Main Model. This
operation rebuilds conversion subsystems in the test harness. If the test harness does not
have conversion subsystems, this process adds them.

Depending on your test harness settings, harness rebuild can also copy parameters and
the active model configuration set. For example, suppose that you update the component
design to use a new parameter. When you rebuild the harness, the harness model
workspace receives a copy of the parameter.

To copy parameters and the model configuration set, when you create or modify the
properties of a test harness, select Update Configuration Parameters and Model
Workspace data on rebuild.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main
model, signal lines in the test harness can be disconnected. If lines are disconnected,
reconnect signal lines to the component under test or conversion subsystems.

Also see “Select Test Harness Properties for Your Task” on page 2-8 and
sltest.harness.rebuild.

Update Parameters from Test Harness to Model

When working in the test harness, you can add a workspace item to the harness model
workspace or change the test harness configuration set. To update the configuration
set and workspace in the main model, select Analysis > Test Harness > Push
Parameters to Main Model. This operation:

2 Test Harness

2-32

• Copies the active configuration set from the harness model to the main model, and
makes it the active configuration set in the main model.

• Copies workspace contents to the main model, if the contents are relevant to the
component under test.

This example shows how to push a new workspace variable to the main model.

1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

4 Right-click the Controller subsystem and select Test Harness > Create Test
Harness.

5 In the Create Test Harness dialog box, click OK to create a test harness with default
properties. The test harness model opens.

6 In the test harness model, select Tools > Model Explorer to open the Model
Explorer. Expand the items under the test harness name and select Model
Workspace.

7 Select Add > MATLAB Variable. Set the variable name to H and the value to 1.
8 In the top level of the test harness, double-click Controller to open the subsystem.

Add a Gain block and set the value to H. Connect it as shown.

 Synchronize Changes Between Test Harness and Model

2-33

9 Select Analysis > Test Harness > Push Parameters to Main Model.
10 In the Model Explorer, expand the main model and select Model Workspace. H

appears as a variable in the workspace.

2 Test Harness

2-34

Related Examples
• “SIL Verification for a Subsystem” on page 4-2

3

Test Sequences and Assessments

• “Introduction to Test Sequences” on page 3-2
• “Organize Test Sequences” on page 3-8
• “Evaluate Temporal or Signal Conditions in a Test Sequence Transition” on page

3-11
• “Generate Function-Based Test Signals” on page 3-14
• “Debug a Test Sequence” on page 3-19
• “Test a Model Component Using Signal Functions” on page 3-22
• “Test Downshift Points of a Transmission Controller” on page 3-26
• “Reuse Test Assessments” on page 3-32

3 Test Sequences and Assessments

3-2

Introduction to Test Sequences
In this section...

“Structure of a Test Sequence” on page 3-2
“Test Sequence Hierarchy” on page 3-2
“Step Transitions” on page 3-2
“Create a Basic Test Sequence” on page 3-3

You can use the Test Sequence block to specify test steps, actions, and transitions. With
time-series inputs, you supply time-defined test vectors. However, the test sequences
you create can react to signal and temporal conditions. You can also use them to assess
simulation.

Structure of a Test Sequence

A test sequence consists of test steps arranged in a hierarchy. You can use transitions to
define the test sequence progression within a hierarchy level.

A test step contains actions and transitions you define using MATLAB as the action
language. Actions execute at the beginning of the step. You use actions to define
commands for each test step, such as setting signal levels, verifying logical conditions, or
setting variables. You use test step transitions to define conditions that determine when
the test sequence exits the current step and enters another step.

A standard transition occurs on a condition that you specify. Once the step exits, the next
step that you specify executes.

Test Sequence Hierarchy

Arrange the test sequence hierarchy using parent steps and substeps. Substeps can
activate only if the parent step is active. A group of steps in the same hierarchy level
shares a common transition type. When you create a test step, the step becomes a
transition option for other steps in the same group.

Step Transitions

In a test sequence, the top hierarchy level uses a standard transition. Test sequence
execution begins with the top step in the group, and proceeds according to the transition
conditions and next steps.

 Introduction to Test Sequences

3-3

You can change lower-level groups to switch between steps based on signal conditions
defined in the step. This switching condition is called a When decomposition. In this
case, the parent step evaluates, and then the substeps execute based on their associated
conditions. The conditions determine the order in which the substeps execute. For
example, the first substep in the table does not necessarily execute first. If multiple steps
in a When decomposition group have conditions that are true, the highest step with the
true condition is active.

Create a Basic Test Sequence

In this example, you create a simple test sequence for a transmission shift logic
controller.

1 Open the model. At the command line, enter

sltestTestSequenceExample

2 Right-click the shift_controller subsystem and select Test Harness > Create Test
Harness.

3 In the Create Test Harness dialog box, under Sources and Sinks, change Inport
to Test Sequence.

The schematic displays the closed-loop configuration between the Test Sequence
block and the component under test.

3 Test Sequences and Assessments

3-4

4 Click OK. The test harness for the shift_controller subsystem opens. Double-
click the Test Sequence block.

The Test Sequence Editor opens and displays action and transition tips. Click the X
to close the tips. The first line in a Step cell defines the step name.

5 Create the test sequence.

a Rename the first step Accelerate and add the step actions:

 Introduction to Test Sequences

3-5

speed = 10*ramp(et);

throttle = 100;

b Rename the second step Stop and add the step actions:

throttle = 0;

speed = 0;

c Right-click Accelerate and select Add sub-step. Create a total of four
substeps for Accelerate.

These steps check the component under test during the test sequence.
d Add a constant to the block. In the Data Symbols pane, hover over Constant

and click Add. Enter Limit for the constant name.
e Hover over Limit and click Edit. In the Initial value field, enter 2. Click OK.
f In the Transition column, enter the transition condition for Accelerate. This

condition uses the duration operator and transitions to the next step when the
system in in fourth gear for 2 seconds.

duration(gear == 4) >= Limit

In the Next Step column, select Stop.
g Change the Accelerate group to a When decomposition sequence. Right-click

Accelerate and select When decomposition.
h Enter the names and actions for the substeps. The fourth step Else takes no

action. It handles conditions that does not match the when statements in the
other three.

Check1st when gear == 1

assert(speed < 45)

Check2nd when gear == 2

assert(speed < 75)

Check3rd when gear == 3

assert(speed < 105)

Else

3 Test Sequences and Assessments

3-6

6 Add a scope to the harness and connect the speed, throttle, and gear signals to
the scope.

7 Set the model simulation time to 15 seconds and simulate the test harness.

 Introduction to Test Sequences

3-7

See Also
“Organize Test Sequences” on page 3-8 | “Reuse Test Assessments” on page 3-32
| “Evaluate Temporal or Signal Conditions in a Test Sequence Transition” on page
3-11 | “Generate Function-Based Test Signals” on page 3-14 | Test Sequence

3 Test Sequences and Assessments

3-8

Organize Test Sequences

Compared to using timeseries data, using the Test Sequence block to define your test
inputs has these advantages:

• You can organize test scenarios in test step groups, and use hierarchy levels to isolate
test scenario execution.

• You can isolate model functionality by separating signal commands into distinct test
steps.

• Steps can execute in response to the model, using logical conditions.
• You can author assessments for specific test conditions.
• You can concisely express signal patterns, such as waveforms, using output

commands.

Before creating test steps, consider the test sequence organization. Clear organization
helps communicate the test sequence intent and structure.

Consider the case of verifying a simple subsystem. The subsystem consists of a switch
controlled by the Engage signal.

The goal of the test is to complete a simple verification of the switch function. The test
does not cover all objectives for full verification, but covers a simple design check. Check
that the output equals Input 1 when the control is engaged, and Input 2 when the
control is not engaged. You organize a test sequence into an initialization step and
two test scenarios. Each scenario sets Input 1 and Input 2, then sets Engage, then
assesses the switch output:

1 Initialize the signals

 Organize Test Sequences

3-9

2 Scenario 1

a Set the signal levels
b Engage the control
c Assess the result

3 Scenario 2

a Set the signal levels
b Engage the control
c Assess the result

In the test sequence editor, the step hierarchy follows the hierarchy of the scenario
outline:

3 Test Sequences and Assessments

3-10

Note: To execute test steps sequentially without using a logical transition condition, use
the condition true. true moves the sequence to the next step after the current step.

 Evaluate Temporal or Signal Conditions in a Test Sequence Transition

3-11

Evaluate Temporal or Signal Conditions in a Test Sequence
Transition

The Test Sequence block uses MATLAB as the action language. You can transition
between test steps by evaluating the component under test. You can use conditional logic,
temporal operators, and event operators.

Consider a simple test sequence that outputs a sine wave at three frequencies. The test
sequence transitions between steps:

• From Initialize to Sine when Switch changes
• From Sine to Sine8 when Switch changes from the value 1
• From Sine8 to Sine16 when Switch changes to the value 13.344

You can use these common operators for temporal and event logic.

Operator Syntax Description

after after(n,TimeUnits) Returns true if n specified units of time
have elapsed since the beginning of the
current test step. The timer resets if the
sequence exits the test step.

3 Test Sequences and Assessments

3-12

Operator Syntax Description

before before(n,TimeUnits) Returns true until n specified units of time
elapse since the beginning of the current
test step. The timer resets if the sequence
exits the test step.

duration ElapsedTime = duration(SignalCondition)duration uses temporal logic and signal
conditions to return the time in seconds
since SignalCondition becomes true,
within the period of the step in which
duration is used.

elapsed

Abbreviation: et
elapsed(TimeUnits)

et(TimeUnits)

Returns the elapsed time of the test step
in the units specified. Omitting time units
returns the value in seconds.

getSimulationTime

Abbreviation: t
getSimulationTime(TimeUnits)

t(TimeUnits)

Returns the elapsed time of the simulation
in the units specified. Omitting time units
returns the value in seconds.

hasChanged hasChanged(u) Returns true if the argument u changes in
value since the beginning of the test step,
otherwise returns false.

In the Test Sequence block, u must be
an input data symbol. u cannot be an
expression or other type of variable.

hasChangedFrom hasChangedFrom(u,A) Returns true if the argument u changes
from the value A, otherwise returns false.

In the Test Sequence block, u must be
an input data symbol. u cannot be an
expression or other type of variable.

hasChangedTo hasChangedTo(u,B) Returns true if the argument u changes to
the value B, otherwise returns false.

In the Test Sequence block, u must be
an input data symbol. u cannot be an
expression or other type of variable.

Syntax in the table uses these arguments:

 Evaluate Temporal or Signal Conditions in a Test Sequence Transition

3-13

TimeUnits

The units of time.

Value: sec|msec|usec

Examples:

msec

SignalCondition

Logical expression of the condition to trigger the temporal operator. Variables used in the
signal condition must be inputs, parameters, or constants in the Test Sequence block.

Examples:

u > 0

x <= 1.56

See Also
Test Sequence

Related Examples
• “Generate Function-Based Test Signals” on page 3-14

3 Test Sequences and Assessments

3-14

Generate Function-Based Test Signals

The Test Sequence block uses MATLAB as the action language. You can use functions to
generate signal outputs to the component under test.

1 Define an output data symbol in the Data Symbols pane.
2 Use the output name with a signal generation function in the test step action.

In this test sequence, the step Sine outputs a sine wave with a period of 10 seconds,
specified by the argument et*2*pi/10. The step Random outputs a random number in
the interval -0.5 to 0.5.

You can also define a function in a script on the MATLAB path, and call the function
in the Test Sequence block. In this test sequence, the ReducedSine step reduces
SignalOut using the function Attenuate.

function[y] = Attenuate(x)

y = 0.65*x;

end

 Generate Function-Based Test Signals

3-15

Note: Scaling, rounding, and other approximations can affect signal functions. Signal
function output is not constrained to a defined pattern. Consider the effect of scaling,
rounding, and other approximations.

You can use these common functions to generate test signals.

Syntax Description Additional Information

square(x) Represents a
square wave
output of period 1
and range -1 to 1,
returning the value
of the square wave
at time x.

Within the period
0 <= x < 1,
square(x)

returns the value
1 for 0 <= x <
0.5and -1 for 0.5
<= x < 1.

square(x) ≡ 4*floor(x)-2*floor(2*x)+1

sawtooth(x) Represents a
sawtooth wave
output of period 1

sawtooth(x) ≡ 2*(x-floor(x))-1

3 Test Sequences and Assessments

3-16

Syntax Description Additional Information

and range -1 to 1,
returning the value
of the sawtooth
wave at time x.

Within the period
0 <= x < 1,
sawtooth(x)

increases.
triangle(x) Represents a

triangle wave
output of period 1
and range -1 to 1,
returning the value
of the triangle
wave at time x.

Within the period
0 <= x < 0.5,
triangle(x)

increases.

triangle(x) ≡ 2*abs(sawtooth(x+0.5))-1

ramp(x) Represents a ramp
signal of slope 1,
returning the value
of the ramp at time
x.

ramp(x) ≡ x

heaviside(x) Represents a
heaviside step
signal, returning 0
for x < 0 and 1 for
x >= 0.

heaviside(x) ≡ x < 0 ? 0 : 1

 Generate Function-Based Test Signals

3-17

Syntax Description Additional Information

latch(x) Returns the
current value of
x and holds that
value during the
test step.

In this example, latch(x) holds the value of x
upon entry of TestStep2, and generates a ramp
signal descending from that value.

Step Transition Next Step

TestStep1

x = ramp(t)

after(5,sec) TestStep2

TestStep2

x = latch(x) - ramp(t)

sin(x)

cos(x)

Returns the sine
(or cosine) of x,
where x is in
radians.

rand Uniformly
distributed
pseudorandom
number.

rand returns a single uniformly distributed value
between 0 and 1.

randn Normally
distributed
pseudorandom
number.

randn returns a value selected from a standard
normal distribution (mean = 0, stdev = 1).

exp(x) Returns
the natural
exponential
function, e

x .

log(x) Natural logarithm
of x. Complex
results are not
supported.

See Also
Test Sequence

3 Test Sequences and Assessments

3-18

Related Examples
• “Evaluate Temporal or Signal Conditions in a Test Sequence Transition” on page

3-11

 Debug a Test Sequence

3-19

Debug a Test Sequence

In this section...

“View Test Step Execution During Simulation” on page 3-19
“Set Breakpoints to Enable Debugging” on page 3-19
“View Data Values During Simulation” on page 3-20
“Step Through Simulation” on page 3-21

You can debug a test sequence using tools in the test sequence editor. Debugging involves
setting breakpoints to stop simulation, observing data and test sequence progression,
and manually stepping through test steps. You can try these features using the model
TestSequenceBlockDebuggingExample. To open the model, enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

open_system('TestSequenceBlockDebuggingExample')

Save a copy of the model to a writable location on the MATLAB path. Double-click the
Test Sequence block to open the test sequence editor.

View Test Step Execution During Simulation

By default, simulation animates the test sequence by highlighting active steps and
transitions. Observing test step execution can help you debug, particularly when
manually stepping through the test sequence. Adjust the animation speed using the

Change Animation Speed button in the toolbar.

Animation speed affects simulation speed. If you slow down animation speed for
debugging, return the speed to Fast or Lightning Fast when you finish debugging to
avoid slowing your simulation. If you do not need the test step highlights and want the
fastest simulation, choose None.

Set Breakpoints to Enable Debugging

You enable debugging for a test sequence by adding one or more breakpoints.
Breakpoints halt simulation every time the test step is evaluated. Therefore, breakpoints
on some test steps, such as When decomposition parent steps, halt simulation
repeatedly because the step is evaluated repeatedly. When simulation halts, you can view
data used in the test sequence to investigate the sequence simulation behavior.

3 Test Sequences and Assessments

3-20

You can add breakpoints to test step actions or transitions:

• To add a breakpoint to a test step action, right-click the test step and select Break
while executing step.

• To add a breakpoint to a test step transition, right-click the test step transition and
select Break when transition taken.

The editor displays a breakpoint marker. After adding breakpoints, simulate the test
sequence by clicking Run.

View Data Values During Simulation

If the simulation pauses (for example, at a breakpoint), you can view the status of
data used in a test step by hovering over the test step. The data values at the current
simulation time display next to the test sequence cell.

Note: If you advance the simulation to another stop (for example, using the keyboard
shortcuts), the data display does not update. Move off the test step and then hover over
the step again to refresh the values.

 Debug a Test Sequence

3-21

Step Through Simulation

When simulation halts, you can step through the test sequence using the toolbar buttons.
Also see “Debugging and Breakpoints Keyboard Shortcuts”.

Objective Details Toolbar Button

Simulate until
breakpoint

Simulation runs until
the next breakpoint

Step forward
through simulation
time

Simulation advances one
simulation step

Step forward
through test
step actions and
transitions

Simulation advances
by each step of a test
sequence, with pauses at
actions and transitions.
Does not step into a
function call.

Step in to a test
step group or called
function

Simulation advances
into the substeps of
a parent step and
executes each action and
transition. Steps into a
function call.

Step out of a test
step group or called
function

Simulation advances
through the remaining
substeps of a parent
step and then out to the
parent step hierarchy
level. Also finishes
execution of a function
call.

See Also
Test Sequence

3 Test Sequences and Assessments

3-22

Test a Model Component Using Signal Functions

In this section...

“Create a Test Sequence” on page 3-22
“Simulate the Test Harness” on page 3-24

Using the Test Sequence block, you can define a set of input functions to test your
component, and conditionally switch the function based on component signals. See Test
Sequence for more information.

This example demonstrates building and simulating a test sequence using ramp and
square wave signals. The test initializes at constant temperature, ramps down to a limit,
and executes a square-wave temperature cycle.

Create a Test Sequence

1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestSignalFunctionExample.slx

sltestHeatpumpBusPostLoadFcn.mat

PumpDirection.m

3 Open the model, and open the harness.

open_system('sltestSignalFunctionExample');

sltest.harness.open('sltestSignalFunctionExample/Controller','RampSquareHarness')

4 Double-click the Test Sequence block to open the test sequence editor.

 Test a Model Component Using Signal Functions

3-23

5 Rename the first and second steps. Delete the default names and replace them with
const_90 and ramp_down.

6 Add a third step to the table. Right-click the const_90 line, and select Add step
after. Name the third step temp_step.

7 Add output conditions and transition fields to the steps. Copy and paste the listings
from the table.

Step Transition Next step

const_90

Tset = 75;

Troom_in = 90;

after(120,sec) ramp_down

ramp_down

Tset = 75;

Troom_in = 90-ramp(et)/8;

Troom_in <= 60; temp_step

temp_step

Tset = 75;

Troom_in = 75+15*square(et/90);

3 Test Sequences and Assessments

3-24

Simulate the Test Harness

1 Set the simulation time to 720 sec.
2 Simulate the Test Harness. Observe the Troom_in signal in the scope.

 Test a Model Component Using Signal Functions

3-25

See Also

Blocks
Test Sequence

3 Test Sequences and Assessments

3-26

Test Downshift Points of a Transmission Controller

This example demonstrates a test sequence and test assessment for a transmission shift
logic controller.

The Model and Controller

This example uses a simplified drivetrain system arranged in a controller-plant
configuration. The objective of the example is to test the transmission controller in
isolation, ensuring that it downshifts correctly.

The Test

The controller should downshift between each of its gear ratios in response to a ramped
throttle application. The test inputs hold vehicle speed constant while ramping the
throttle. The Test Assessment block includes requirements-based assessments of the
controller performance.

path = fullfile(matlabroot,'examples','simulinktest');

mdl = 'TransmissionDownshiftTestSequence';

harness = 'controller_harness';

open_system(fullfile(path,mdl));

 Test Downshift Points of a Transmission Controller

3-27

Open the Test Harness

Click the badge on the subsystem shift_controller and open the test harness
controller_harness. shift_controller is connected to a Test Sequence block and a
Test Assessment block.

sltest.harness.open([mdl '/shift_controller'],harness)

The Test Sequence

Double-click the Test Sequence block to open the test sequence editor.

The test sequence begins by ramping speed to 75 to initialize the controller to fourth
gear. Throttle is then ramped at constant speed until a gear change. Subsequent
initialization and downshifts execute. After the change to first gear, the test sequence
stops.

open_system([harness '/Test Sequence']);

3 Test Sequences and Assessments

3-28

Test Assessments for the Controller

Assume that the requirements for the shift controller include:

• Speed shall never be negative.
• Gear shall always be positive.
• Throttle shall be between 0% and 100%.

 Test Downshift Points of a Transmission Controller

3-29

• The controller shall not let the engine overspeed.

Open the Test Assessment block. These assertions in the block correspond to the first
three requirements. If the controller violates one of the assertions, the simulation fails.

assert(speed >= 0, 'speed must be >= 0');

assert(throttle >= 0, 'throttle must be >= 0 and <= 100');

assert(throttle <= 100, 'throttle must be >= 0 and <= 100');

assert(gear > 0,'gear must be > 0');

The last requirement has three sub-requirements. We assume that the engine cannot
overspeed in fourth (top) gear.

• The controller shall not let the vehicle speed exceed 90 in gear 3.
• The controller shall not let the vehicle speed exceed 50 in gear 2.
• The controller shall not let the vehicle speed exceed 30 in gear 1.

You can model these assessments with a When decomposition sequence. When
decomposition step selection is based on signal conditions defined in the Step column,
with each condition preceded by the when operator. The Transition and Next Step
columns do not affect the transition. The last step Else in the when decomposition covers
any undefined condition and does not use a when declaration.

To change a sequence to a When decomposition, right-click a step and select When
decomposition. Sub-steps of this step then operate using the when operator.

AssertConditions has sub-steps that assess the controller as follows:

OverSpeed3 when gear==3

assert(speed <= 90,'Engine overspeed in gear 3')

OverSpeed2 when gear==2

assert(speed <= 50,'Engine overspeed in gear 2')

OverSpeed1 when gear==1

assert(speed <= 30,'Engine overspeed in gear 1')

3 Test Sequences and Assessments

3-30

Testing the Controller

Simulating the test harness demonstrates the progressive throttle ramp at each test
step, and the corresponding downshifts. The controller passes all of the assessments in
the Test Assessment block.

open_system([harness '/FloatingScope'])

sim(harness);

 Test Downshift Points of a Transmission Controller

3-31

3 Test Sequences and Assessments

3-32

Reuse Test Assessments
If one test assessment covers many test cases, consider reusing the assessment from
a single source such as a library. Reusing test assessments allows you to update and
manage the source rather than multiple copies of the same assessment. Often, such
assessments are associated with broad requirements such as:

• “The speed signal must never be negative.”
• “The cruise control must never be engaged while the brake is engaged.”
• “The heatpump must wait more than 5 seconds before switching from on to off or off

to on.”
• “The projector temperature must never exceed 65 degrees Celsius.”

Reuse Test Assessments Using a Library

This example shows how to reuse test assessments contained in a test sequence block
using a linked block from a library.

When you create a test harness, you can include a standalone Test Sequence block for
test assessments (a Test Assessment block). Often, assessments cover multiple test cases,
making it convenient to reuse the same Test Assessment block. Test assessment reuse
has these advantages:

• Assessments are stored in a single source. If the requirements change, you update
only the assessments in the library.

• You can link to test requirements from the source. Linking from the source reduces
the number of requirements links to manage.

To reuse a standalone Test Assessment block in multiple test harnesses, create the Test
Assessment block in a library, and reuse the Test Assessment block in multiple test
harnesses by way of linked blocks.

Consider using a library for high-level test assessments that correspond to multiple test
cases.

You can also create reusable assessments in a library using blocks from the Model
Verification library in Simulink.

Explore the Test Sequence Example Model

1. Open the model. At the command line, enter:

 Reuse Test Assessments

3-33

sltestTestSequenceExample

2. Click the badge on the shift_controller subsystem and open the
controller_harness test harness.

3 Test Sequences and Assessments

3-34

The Test Assessment block contains four assertions that define the assessment criteria:

assert(speed >= 0)

assert(throttle >= 0)

assert(throttle <= 100)

assert(gear > 0)

Create a Library for the Test Assessments

1 In the test harness, select File > New > Library.
2 Save the new library as AssessmentLibrary in a writable location on the

MATLAB® path.
3 Copy the Test Assessment block from the test harness to the library, and then delete

the Test Assessment block from the test harness.
4 Save the library.

Create a Linked Test Assessment Block in Test Harnesses

Copy the Test Assessment block from the library to the test harness to create a linked
block.

 Reuse Test Assessments

3-35

1 In the test harness, enable the library link display. Select Display > Library Links
> All.

2 Copy the Test Assessment block from AssessmentLibrary into
controller_harness. The block displays a library link badge.

3 Connect the signal inputs to the Test Assessment block.

Edit the Assessment Block in the Library

1 Unlock the library. Select Diagram > Unlock Library.
2 Add a fifth assertion to the Test Sequence block: assert(gear < 5);
3 Save and close the library. Closing locks the library.

4

Test Harness Software- and Processor-
in-the-Loop

4 Test Harness Software- and Processor-in-the-Loop

4-2

SIL Verification for a Subsystem

In this section...

“Create a SIL Verification Harness for a Controller” on page 4-3
“Configure and Simulate a SIL Verification Harness” on page 4-5
“Compare the SIL Block and Model Controller Outputs” on page 4-5

This example shows subsystem verification by ensuring the output of software-in-the-
loop (SIL) code matches that of the model subsystem. You generate a SIL verification
harness, collect simulation results, and compare the results using the simulation data
inspector. You can apply a similar process for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host
computer. Additionally, with PIL simulation, you can verify the compiled object code
that you intend to deploy in production. You can run the PIL object code on real target
hardware or on an instruction set simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode
for model verification. You can compare the SIL or PIL block results with the model
results and collect metrics, including execution time and code coverage. Using the test
harness to perform SIL and PIL verification, you can:

• Manage the harness with your model. Generating the test harness generates the SIL
block. The test harness is associated with the component under verification. You can
save the test harness with the main model.

• Use built-in tools for these test-design-test workflows:

• Checking the SIL or PIL block equivalence
• Updating the SIL or PIL block to the latest model design

• View and compare logged data and signals using the test manager and Simulation
Data Inspector.

For information about running multiple simulations with unchanged generated code, see
“Prevent Code Changes in Multiple SIL and PIL Simulations”.

Also see “Code Generation of Subsystems” in the Simulink Coder™ documentation.

The example models a closed-loop controller-plant system. The controller regulates the
plant output.

 SIL Verification for a Subsystem

4-3

Create a SIL Verification Harness for a Controller

Create a SIL verification harness using data that you log from a controller subsystem
model simulation. You need an Embedded Coder license for this example.

1 Open the example model by entering

rtwdemo_sil_block

at the MATLAB command prompt,

2 Save a copy of the model using the name controller_model in a new folder, in a
writable location on the MATLAB path.

3 Enable signal logging for the model. At the command prompt, enter

set_param(bdroot,'SignalLogging','on','SignalLoggingName',...

'SIL_signals','SignalLoggingSaveFormat','Dataset')

4 Test Harness Software- and Processor-in-the-Loop

4-4

4 Right-click the signal into Controller port In1, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller_model_input.
Select Log signal data and click OK.

5 Right-click the signal out of Controller port Out1, and select Properties.
In the Signal Properties dialog box, for the Signal name, enter
controller_model_output. Select Log signal data and click OK.

6 Simulate the model.
7 Get the logged signals from the simulation output into the workspace. At the

command prompt, enter

out_data = out.get('SIL_signals');

control_in1 = out_data.get('controller_model_input');

control_out1 = out_data.get('controller_model_output');

8 Create the software-in-the-loop test harness. Right-click the Controller subsystem
and select Test Harness > Create Test Harness (Controller).

9 Set the harness properties:

• Name: SIL_harness
• Sources and Sinks: Inport and Outport
• Initial harness configuration: Verification
• Verification Mode: Software-in-the-loop (SIL)
• Select Open harness after creation

Click OK. The resulting test harness has a SIL block.

 SIL Verification for a Subsystem

4-5

Configure and Simulate a SIL Verification Harness

Configure and simulate a SIL verification harness for a controller subsystem.

1 Configure the test harness to import the logged controller input values. From the top
level of the test harness, in the model Configuration Parameters dialog box, in
the Data Import/Export pane, select Input. Enter control_in1.Values as the
input and click OK.

2 Enable signal logging for the test harness. At the command prompt, enter

set_param('SIL_harness','SignalLogging','on','SignalLoggingName',...

'harness_signals','SignalLoggingSaveFormat','Dataset')

3 Right-click the output signal of the SIL block and select Properties. In the Signal
Properties dialog box, for the Signal name, enter SIL_block_out. Select Log
signal data and click OK.

4 Simulate the harness.

Compare the SIL Block and Model Controller Outputs

Compare the outputs for a verification harness and a controller subsystem.

1 In the test harness model, click the Simulation Data Inspector button to open the
Simulation Data Inspector.

2 In the Simulation Data Inspector, click Import. In the Import dialog box.

• Set Import from to: Base workspace.
• Set Import to to: New Run.
• Under Data to import, select Signal Name to import data from all sources.

3 Click Import.
4 Select the SIL_block_out and controller_model_out signals in the Runs pane

of the data inspector window.

The chart displays the two signals, which overlap. This result suggests equivalence
for the SIL code. You can plot signal differences using the Compare tab in SDI, and
perform more detailed analyses for verification. For more information, see “Compare
Signal Data from Multiple Simulations” in the Simulink documentation.

4 Test Harness Software- and Processor-in-the-Loop

4-6

5 Close the test harness window. You return to the main model. The badge on the
Controller block indicates that the SIL harness is associated with the subsystem.

5

Simulink Test Manager Introduction

5 Simulink Test Manager Introduction

5-2

Introduction to the Test Manager

In this section...

“Test Manager Description” on page 5-2
“Test Creation and Hierarchy” on page 5-2
“Test Results” on page 5-3
“Share Results” on page 5-3

Test Manager Description

The test manager in Simulink Test enables you to automate Simulink model testing and
organize large sets of tests. A model test is performed using test cases where criteria are
specified to determine a pass-fail outcome. The test cases are run from the test manager.
At the end of a test, the test case results are organized and viewed in the test manager.

Test Creation and Hierarchy

Test cases are contained within a hierarchy of test files and test suites in the Test
Browser pane of the test manager. A test file can contain multiple test suites, and test
suites can contain multiple test cases.

There are three types of test case templates to choose from in the test manager. Each test
case uses a different set of criteria to determine the outcome of a test.

 Introduction to the Test Manager

5-3

• Baseline: compares signal outputs of a simulation to a baseline set of signals. The
comparison of the simulation output and the baseline must be within the absolute or
relative tolerances to pass the test, which is defined in the Baseline Criteria section
of the test case.

• Equivalence: compares signal outputs between two simulations. The comparison of
outputs must be within the absolute or relative tolerances to pass the test, which is
defined in the Equivalence Criteria section of the test case.

• Simulation: checks that a simulation runs without errors, which includes model
assertions.

Test Results

Results of a test are given using a pass-fail outcome. If all of the criteria defined in a
test case is satisfied, then a test passes. If any of the criteria are not satisfied, then the
test fails. Once the test has finished running, the results are viewed in the Results and
Artifacts pane. Each test result has a summary page that highlights the outcome of the
test: passed, failed, or incomplete. The simulation output of a model is also shown in the
results section. Signal data from the simulation output can be visually inspected using
the Simulation Data Inspector.

Share Results

Once you have completed the test execution and analyzed the results, you can share the
test results with others or archive them. If you want to share the results to be viewed
later in the test manager, then you can export the results to a file. To archive the results
in a document, you can generate a report, which can include the test outcome, test
summary, and any criteria used for test comparisons.

6

Test Manager Test Cases

• “Test Model Output Against a Baseline” on page 6-2
• “Test a Simulation for Run-Time Errors” on page 6-6
• “Generate Test Cases from Model Components” on page 6-9
• “Use External Inputs in Test Cases” on page 6-13
• “Automate Tests Programmatically” on page 6-16
• “How Tolerances Are Applied to Test Criteria” on page 6-19
• “Test Manager Limitations” on page 6-20
• “Test Case Sections” on page 6-21
• “Test Models Using Inputs Generated by Simulink Design Verifier” on page 6-27

6 Test Manager Test Cases

6-2

Test Model Output Against a Baseline

To test the simulation output of a model against a defined baseline data set, use a
baseline test case. In this example, use the sldemo_absbrake model to compare the
simulation output to a baseline that is captured from an earlier state of the model.

Create the Test Case

1 Open the sldemo_absbrake model.
2 To open the test manager from the model, select Analysis > Test Manager.
3 From the test manager toolstrip, click New to create a test file. Name and save the

test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.

5 Under System Under Test in the test case, click the Use current model button

 to load the sldemo_absbrake model into the test case.
6 Under Baseline Criteria, click Capture to record a baseline data set from the

model specified under System Under Test.

Save the baseline data set to a location. After you save the baseline MAT-file, the
model runs and the baseline criteria appear in the table.

7 Expand the baseline data set. Set the Absolute Tolerance of the first yout signal
to 15, which corresponds to the Ww signal.

 Test Model Output Against a Baseline

6-3

For more information about tolerances and criteria, see “How Tolerances Are Applied to
Test Criteria” on page 6-19.

Run the Test Case and View Results

1 In the sldemo_absbrake model, set the Desired relative slip constant block to
0.22.

2 In the test manager, select the Slip Baseline Test case in the Test Browser pane.
3 On the test manager toolstrip, click Run to run the selected test case.

The test manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

4 Expand the results until you see the baseline criteria result.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout.Ww signal.

The Comparison tab opens and shows the criteria comparisons for the yout.Ww
signal.

6 Test Manager Test Cases

6-4

6 You can also view signal data from the simulation. Expand Sim Output and select
the signals you want to plot.

The Visualize tab opens and plots the simulation output.

 Test Model Output Against a Baseline

6-5

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports” on page 7-9.

6 Test Manager Test Cases

6-6

Test a Simulation for Run-Time Errors

In this example, use a simulation test case with the sldemo_absbrake model to test for
simulation run-time errors. The pass-fail criteria used for a simulation test case is that
the simulation finishes without any errors.

Configure the Model

Configure the model to check if the stopping distance exceeds an upper bound.

1 Open the model sldemo_absbrake.
2 Add the Check Static Upper Bound block from the Model Verification library to the

model.
3 Connect the Check Static Upper Bound block to the Sd signal.

 Test a Simulation for Run-Time Errors

6-7

4 In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

Create the Test Case

1 To open the test manager, from the model, select Analysis > Test Manager.
2 Click New to create a test file. Name and save the test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

3 Select New > Simulation Test.
4 Right-click the new simulation test case in the Test Browser pane, and select

Rename. Rename the test case to Upper Bound Test.
5 In the test case, under System Under Test, click the Use current model button

 to assign the sldemo_absbrake model to the test case.
6 Under Parameter Overrides, click Add to add a parameter set.
7

In the dialog box, click the Refresh button to update the model parameter list.
8 Select the check box next to the workspace variable m. Click OK.
9 Double-click the Override Value and enter 55.

This value overrides the parameter value in the model when the simulation runs.

Note: To restore the default value of a parameter, clear the value in the Override
Value column and press Enter.

Run the Test Case

1 In the Test Browser pane, select the Upper Bound Test case.

6 Test Manager Test Cases

6-8

2 On the test manager toolstrip, click Run to run the selected test case.

The test manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

View Test Results

1 Expand the test results, and double-click Upper Bound Test.

A new tab opens that displays the outcome and results summary of the simulation
test.

2 The result shows a red X, which indicates a test failure. In this case, the model
stopping distance exceeded the upper bound of 725 and triggered an assertion from
the Check Static Upper Bound block.

Look under Errors for the details of the assertion failure.

 Generate Test Cases from Model Components

6-9

Generate Test Cases from Model Components

In this section...

“Generate the Test Cases” on page 6-9
“Synchronize Test Cases” on page 6-10

The test manager can generate a list of test cases for you based on the components in
your model. Test cases can be generated from:

• Signal Builder block in the top model
• Test harnesses from the top model or any subsystem
• Signal Builder block at the top level of a test harness

If there are multiple Signal Builder blocks in the top model, then the test manager does
not create any test cases from Signal Builder blocks.

Generate the Test Cases

1 In the test manager, click the New arrow and select Test File > Test File from
Model.

6 Test Manager Test Cases

6-10

2 In the New Test File dialog box, select the model and location. The model must be
on the MATLAB path.

3 Select the Test type to generate for all test cases.

4 Click Create.

Synchronize Test Cases

If you add model components to your model, such as Signal Builder groups or test
harnesses, then you can generate new test cases in the test manager to synchronize your
model. Also, if you remove model components, then you can disable or delete test cases in
the test manager when you synchronize. In the test manager Test Browser pane, you

can synchronize your model and test file using the synchronization button next to the
test file name.

For example, the sldemo_autotrans model has a Signal Builder block with four groups
by default. If you generate test cases from the model using New > Test File > Test File
from Model, then test cases generate using the Signal Builder groups.

 Generate Test Cases from Model Components

6-11

If you add another Signal Builder group, New Signal Builder Group, and a test
harness, sldemo_autotrans_Harness1, then you can add test cases for these model
components. Synchronize the model and test file.

1 In the test manager, hover over the test file name that you want to synchronize.
2 Click the synchronization button next to the test file name.
3 Review the synchronization dialog box to add or remove any test cases, and select the

test case type: baseline, equivalence, or simulation.

4 To complete the synchronization, click Update Test File.

In the Test Browser pane, the new test cases appear in the test file.

6 Test Manager Test Cases

6-12

If you remove model components and synchronize the test file, then you can remove or
disable a test case using the Action menu. For example, if you remove New Signal
Builder Group from the model, then the synchronization dialog box shows the deleted
Signal Builder group.

 Use External Inputs in Test Cases

6-13

Use External Inputs in Test Cases

In this section...

“Use MAT-File for Inputs” on page 6-13
“Use Microsoft Excel File for Inputs” on page 6-13

If you have external model inputs from MAT-files or Microsoft® Excel® file sheets, then
you can use these as inputs in a test case. External inputs are mapped to the model using
root inport mapping under the Inputs section. You can import multiple external input
files to a test case, but you can select only one external input set to execute when the test
runs.

For more information about root inport mapping modes, supported data types or formats,
and mapping results, see “Import and Map Root-Level Inport Data”.

Use MAT-File for Inputs

To add a MAT-file as an external input:

1 Expand the Inputs section in the test case.
2 Under the External Inputs table, click Add.
3 Specify a MAT-file.
4 Under Input Mapping, choose a mapping mode. For more information about

mapping modes, see “Import and Map Root-Level Inport Data”.
5 Click Map Inputs. The Mapping Status table shows if the port and signals map

successfully.

For more information about troubleshooting the mapping status, see “Understand
Mapping Results”.

6 Click Apply.

Use Microsoft Excel File for Inputs

The Root Inport Mapping tool supports Microsoft Excel spreadsheets only for Windows®

systems. For Microsoft Excel spreadsheets:

• The tool interprets each worksheet as a Simulink.SimulationData.Dataset data set.
• Each worksheet name must be a valid MATLAB variable name.

6 Test Manager Test Cases

6-14

• The tool interprets the first row of a worksheet as signal names. If you do not specify
a signal name, the tool assigns a default one using the format Signal#.

• If all columns do not have signal names, the tool assigns signal names using the
format Signal#, where # increments with each additional signal.

• All signal-name columns must be filled in. If there are empty signals, the tool returns
an error at import.

• The tool interprets the first column as time. In this column, the time values must
increase.

• The tool interprets the remaining columns as signals.

To add a Microsoft Excel file as an external input:

1 Expand the Inputs section in the test case.
2 Under the External Inputs table, click Add.

 Use External Inputs in Test Cases

6-15

3 Specify a Microsoft Excel file.
4 Select the sheet that contains the input data.
5 If you want to use each sheet to create an input set in the table, select Create

scenarios from each sheet.
6 Under Input Mapping, choose a mapping mode. For more information about

mapping modes, see “Import and Map Root-Level Inport Data”.
7 Click Map Inputs. The Mapping Status table shows if the port and signals map

successfully.

For more information about troubleshooting the mapping status, see “Understand
Mapping Results”.

8 Click Apply.

6 Test Manager Test Cases

6-16

Automate Tests Programmatically

In this section...

“List of Functions and Classes” on page 6-16
“Create and Run a Test Case” on page 6-17

List of Functions and Classes

Function Description

sltest.testmanager.view Launch the Simulink Test manager
sltest.testmanager.createTestsFromModelGenerate test cases from a model
sltest.import.sldvData Create test cases from Simulink Design

Verifier results
sltest.testmanager.load Load a test file in the Simulink Test

manager
sltest.testmanager.run Run all test files in the Simulink Test

manager
sltest.testmanager.copyTests Copy test cases or test suites to another

location
sltest.testmanager.moveTests Move test cases or test suites to a new

location
sltest.testmanager.report Generate report of test results
sltest.testmanager.clear Clear all test files from the Simulink Test

manager
sltest.testmanager.close Close the Simulink Test manager

Class Description

sltest.testmanager.TestFile Test file object
sltest.testmanager.TestSuite Test suite object
sltest.testmanager.TestCase Test case object
sltest.testmanager.ParameterSet Parameter set object
sltest.testmanager.ParameterOverride Parameter override object

 Automate Tests Programmatically

6-17

Class Description

sltest.testmanager.TestInput Test input object
sltest.testmanager.BaselineCriteria Baseline criteria object
sltest.testmanager.EquivalenceCriteria Equivalence criteria object
sltest.testmanager.SignalCriteria Signal criteria object
sltest.testmanager.ResultSet Access results set data
sltest.testmanager.TestSuiteResult Access test suite results data
sltest.testmanager.TestCaseResult Access test case results data

Create and Run a Test Case

This example shows how to use the sltest.testmanager functions, classes, and
methods to automate tests and generate reports. You can create a test case, edit the
test case criteria, run the test case, and generate results reports programmatically. The
example compares the simulation output of the model to a baseline data set.

Create the test file, test suite, and test case structure.

tf = sltest.testmanager.TestFile('API Test File');

ts = tf.createTestSuite('API Test Suite');

tc = ts.createTestCase('baseline','Baseline API Test Case');

Remove the default test suite.

tsDel = tf.getTestSuiteByName('New Test Suite 1');

remove(tsDel);

Assign the system under test to the test case.

tc.setProperty('Model','sldemo_absbrake');

Capture the baseline criteria.

baseline = tc.captureBaselineCriteria('baseline_API.mat',true);

Test a new model parameter by overriding it in the test case parameter set.

ps = tc.addParameterSet('Name','API Parameter Set');

po = ps.addParameterOverride('m',55);

6 Test Manager Test Cases

6-18

Set the baseline criteria tolerance for a signal.

sc = baseline.getSignalCriteria;

sc(1).AbsTol = 9;

Run the test case and return an object with results data. The results set object gives
information about the number of passed, failed, and disabled test cases.

ResultsObj = run(tc);

Open the test manager so you can view the simulation output and comparison data.

sltest.testmanager.view;

The test case fails because only one of the signal comparisons between the simulation
output and the baseline criteria is within tolerance.

Generate a report from the results data.

filePath = 'test_report.pdf';

sltest.testmanager.report(ResultsObj,filePath,'Author','Test Engineer',...

 'IncludeSimulationSignalPlots',true,'IncludeComparisonSignalPlots',true);

The results report is a PDF and opens when it is completed. For more report generation
settings, see the sltest.testmanager.report function reference page.

See Also
sltest.testmanager.report

 How Tolerances Are Applied to Test Criteria

6-19

How Tolerances Are Applied to Test Criteria

Tolerances can be specified in the Baseline Criteria or Equivalence Criteria sections
of test cases. The default value for the relative tolerance and absolute tolerance for a
signal comparison is zero. If you specify tolerances, then the test calculates the tolerances
as follows:

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The more lenient tolerance is used to determine the pass-fail outcome of the criteria
comparison.

Modify Criteria Tolerances

You can change the criteria tolerances in the Baseline Criteria or Equivalence
Criteria sections of baseline or equivalence test cases, respectively. To modify a
tolerance, select the signal name in the criteria table and double-click the tolerance
value.

If you modify a tolerance after a test case has been run, then rerun the test case to apply
the new tolerance value to the pass-fail results.

6 Test Manager Test Cases

6-20

Test Manager Limitations

In this section...

“Simulation Mode” on page 6-20
“Callback Scripts” on page 6-20
“Protected Models” on page 6-20

Simulation Mode

There are some limitations for the simulation mode in test cases:

• The System Under Test cannot be in Fast Restart or External mode for test
execution.

• A test that is running with the System Under Test simulation mode set to Rapid
Accelerator cannot be stopped using Stop on the test manager toolstrip. To stop the
test, enter Ctrl+c in the MATLAB command prompt.

Callback Scripts

The test case callback scripts are not stored with the model and do not override Simulink
model callbacks. Test case callback scripts have some limitations:

• The test manager cannot stop the execution of an infinite loop inside a callback
script. To stop execution of an infinite loop from a callback script, press Ctrl+c in the
MATLAB command prompt.

• sltest.testmanager functions are not supported.

Protected Models

You cannot specify a protected model as the model used for a test case in the System
Under Test section.

 Test Case Sections

6-21

Test Case Sections

In this section...

“Description” on page 6-22
“Requirements” on page 6-22
“System Under Test” on page 6-22
“Parameter Overrides” on page 6-23
“Callbacks” on page 6-24
“Inputs” on page 6-25
“Outputs” on page 6-25
“Configuration Settings” on page 6-25
“Simulation 1 and Simulation 2” on page 6-25
“Equivalence Criteria” on page 6-25
“Baseline Criteria” on page 6-26

Information about the test case sections is outlined here. Double-click a test case in the
Test Browser pane to open a tab and view all of the test case sections. A baseline test
case is shown as an example. For more information on which test case to use for your
application, see “Introduction to the Test Manager” on page 5-2.

6 Test Manager Test Cases

6-22

If a box or list in the test case shows a warning icon , then it is a required field in
order for the test case to run.

Description

To add descriptive text to your test case, expand the section and double-click the text box
below Description.

Requirements

You can create, edit, and delete requirements traceability links for a test case in the
Requirements section if you have a license for Simulink Verification and Validation. To
add requirements links:

1 Click the Edit requirements button .
2 In the Link Editor dialog box, click New to add a requirement link to the list.
3 Type the name of the requirement link in the Description box.
4 Click Browse and locate the requirement file. Click Open. For more information on

supported requirements document types, see “Supported Requirements Document
Types”.

5 Click OK. The requirement link appears in the Requirements list if a document is
specified in the Link Editor.

For more information about the Link Editor, see “Requirements Traceability Link
Editor”.

System Under Test

Specify the model you want to test in the System Under Test section. To use the

current model that is in focus, click the Use current model button .

Note: The model must be available on the path to run the test case. You can set the path
programmatically using the pre-load callback. See “Callbacks” on page 6-24.

 Test Case Sections

6-23

If a new model is specified in the System Under Test section, then the model information
might not be up to date. To update the model test harnesses,Signal Builder groups, and

available configuration sets, click the Refresh button .

Test Harness

If you have a test harness in your system under test, then you can select the test harness
to be used for the test case. If a test harness has been added or removed from a model,

then you might need to click the Refresh button to view the updated list of available
test harnesses.

For more information about using test harnesses, see “Refine, Test, and Debug a
Subsystem” on page 2-14.

Simulation Settings

You can override the System Under Test simulation settings such as the simulation
mode, start time, stop time, and initial state.

Parameter Overrides

You can specify parameter values in the test case to override the parameter values in
the model workspace, data dictionary, or base workspace in the Parameter Overrides
section. Parameters are grouped into sets. Parameter sets and individual parameters
overrides can be turned on or off by selecting or clearing the check box next to the set or
parameter. To add a parameter override:

1 Click Add.

A dialog box opens with a list of parameters. If the list of parameters is not current,

press the Refresh button in the dialog box to update the list.
2 Select the parameter you want to override.
3 Click OK to add the parameter to the parameter set.
4 Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value
column and press Enter.

6 Test Manager Test Cases

6-24

You can also add a set of parameter overrides from a MAT-file. Click the Add arrow and
select Add File to create a new parameter set from a MAT-file.

For an example about parameter overrides, see “Overriding Model Parameters in a Test
Case”.

Callbacks

Test-Suite Level Callbacks

There are two callback scripts available in each test suite that execute at different times
during a test:

• Setup: runs before the test suite executes.
• Cleanup: runs after the test suite executes.

Test-Case Level Callbacks

There are three callback scripts available in each test case that execute at different times
during a test:

• Pre-load: runs before the model loads and any model callbacks.

An example of a pre-load callback script would be to add the model path:

addpath(C:\MATLAB\model);

• Post-load: runs after the model loads and the PostLoadFcn model callback.
• Cleanup: runs after simulations and all model callbacks.

Click the Run button next to Pre-Load, Post-Load, or Cleanup to run only that
callback script.

See “Test Manager Limitations” on page 6-20 for the limitations of callback scripts inside
test cases. For information on Simulink model callbacks, see “Model Callbacks”.

There are predefined variables available to you in the test case callbacks:

• sltest_bdroot available in Post-Load: The model simulated by the test case. This
can be a harness model.

• sltest_sut available in Post-Load: The system under test. For a harness, it is the
component under test.

 Test Case Sections

6-25

• sltest_isharness available in Post-Load: Returns true if sltest_bdroot is a
harness model.

• sltest_simout available in Cleanup: Simulation output produced by simulation.

Inputs

You can override inputs to your System Under Test. You can use inputs from signal
builder groups in the model, or you can use external inputs from MAT-files or Microsoft
Excel files. You can use only one external input set in the External Inputs table to run
when the test case executes. External inputs are mapped using root inport mapping. See
“Identify Signal Data to Import and Map” for more information on supported file formats.

For an example of how to use external inputs, see “Use External Inputs in Test Cases” on
page 6-13. For more information on the Root Inport Mapping tool see “Import and Map
Root-Level Inport Data”.

Outputs

You can override model output settings. These settings are the same settings found in
the Data Import/Export pane of the Model Configuration Parameters.

Configuration Settings

You can override the System Under Test configuration settings.

Note: If you have selected Override model settings in the Outputs section, then these
settings override the output settings in the configuration settings.

Simulation 1 and Simulation 2

The Simulation 1 and Simulation 2 sections in the equivalence test case are the same
templates. The system under test from Simulation 1 and Simulation 2 are compared to
each other using the signal data defined under Equivalence Criteria.

Equivalence Criteria

This test case section is only contained in an equivalence test case. The equivalence
criteria is a set of signal data that is compared between Simulation 1 and Simulation

6 Test Manager Test Cases

6-26

2 in an equivalence test case. You can specify both absolute and relative tolerances for
individual signals or the entire criteria set. Tolerances can be specified in this section to
regulate pass-fail criteria of the test.

Click Capture to run the system under test in Simulation 1 and identify signals
for equivalence criteria. Signals in the model marked for streaming and logging are
captured.

For an example about how to use an equivalence test case and criteria, see “Test Two
Simulations for Equivalence”.

Baseline Criteria

This test case section is only contained in a baseline test case. You can use signal data
from a MAT-file or Microsoft Excel file. Microsoft Excel files need to use the same
formatting as specified by the Root Inport Mapping tool. For more information, see
“Import and Map Root-Level Inport Data”. Only the first sheet of the Microsoft Excel file
is read for baseline criteria.

To capture streamed and logged signal data from the System Under Test, click
Capture to compile and run the system. You are asked to save the signal data to a MAT-
file.

Tolerances can be specified in this section to determine the pass-fail criteria of the test
case. You can specify both absolute and relative tolerances for individual signals or the
entire baseline criteria set. When the baseline test case executes, signals in the model
marked for streaming and logging are captured and compared to the baseline criteria. To
see tolerances used in an example for baseline criteria, see “Test Model Output Against a
Baseline” on page 6-2.

 Test Models Using Inputs Generated by Simulink Design Verifier

6-27

Test Models Using Inputs Generated by Simulink Design Verifier

In this section...

“Overall Workflow” on page 6-27
“Test Case Generation Example” on page 6-28

Using Simulink Design Verifier, you can generate tests that replicate design errors,
achieve test objectives, or exercise your model to meet coverage criteria. Over the course
of developing your model and generating code, you might repeatedly exercise your model
and code with these test inputs. You can simplify repeated testing using Simulink Testto
automatically create test cases that use inputs generated using Simulink Design Verifier
analysis.

Overall Workflow

Test case generation follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

• If you use an existing results file, you can load results by either:

• Using the Simulink Test command sltest.import.sldvData.
• Using Simulink Design Verifier menu items. In the model, select Analysis

> Design Verifier > Results > Load. Select the MAT file with the analysis
results.

• If you run a model analysis, the Design Verifier Results Summary window
appears after the analysis completes.

2 In the results summary window, click Export test cases to Simulink Test.
3 Select an existing test harness, or create a test harness.

Note: If you create a new test harness, the new harness uses inports to load the
inputs from a MAT file. If you select an existing test harness, the existing test
harness must use inport sources.

4 Simulink Test generates the test file and test harness. In the test manager, expand
the new test file in the Test Browser to see the individual test cases.

6 Test Manager Test Cases

6-28

Test Case Generation Example

This example shows how to generate test cases to achieve coverage objectives for a
controller subsystem. It also shows how to add functional test cases from test harnesses
in the model. The example requires a Simulink Design Verifier license.

The model is a closed-loop heatpump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot,'toolbox','sltest','examples',...

'sltestTestCaseFromDVExample.slx'));

2 Set the current working folder to a writable folder.
3 In the model, generate tests for the Controller subsystem. Right-click the Controller

block and select Design Verifier > Generate Tests for Subsystem.
4 In the Results Summary window, click Export test cases to Simulink Test.
5 In the Harness Selection dialog box, select New Harness. Click OK.

The test manager displays five new test cases in the test file.

6 Click the harness badge to preview the new test harness.

 Test Models Using Inputs Generated by Simulink Design Verifier

6-29

7 Add a test case to the other test harness in the model. In the test manager, hover

over the new test file name and click the Synchronize Test File button .
8 The test manager prompts you to add tests for the Requirement2 test harness. Select

Simulation for the test type, and click Update Test File.

The test manager adds the Requirement2 test case to the test file.

See Also
sltest.import.sldvData

7

Test Manager Results and Reports

• “View Test Case Results” on page 7-2
• “Export Test Results and Generate Reports” on page 7-9
• “Results Sections” on page 7-13

7 Test Manager Results and Reports

7-2

View Test Case Results

In this section...

“View Results Summary” on page 7-2
“Visualize Test Case Simulation Output and Criteria” on page 7-4

After a test case has finished running in the test manager, the test case result becomes
available in the Results and Artifacts pane. Test results are organized in the same
hierarchy as the test file, test suite, and test cases that were run from the Test Browser
pane. In addition, the Results and Artifacts pane shows the criteria results and
simulation output, if applicable to the test case.

View Results Summary

The test case results tab gives a high-level summary and other information about an
individual test case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

2 Double-click a test case result.

 View Test Case Results

7-3

A tab opens containing the test case results information.

7 Test Manager Results and Reports

7-4

Visualize Test Case Simulation Output and Criteria

You can view signal data from simulation output or comparisons of signal data used in
baseline or equivalence criteria.

To view simulation output from a test case:

1 Select the Results and Artifacts pane.
2 Expand the Sim Output section of the test case result.

 View Test Case Results

7-5

3 Select the check box of signals you want to plot.

The Visualize tab appears and plots the signals.

7 Test Manager Results and Reports

7-6

To view equivalence or baseline criteria comparisons:

1 Select the Results and Artifacts pane.
2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of

the test case result.
3 Select the option button of the signal comparison you want to plot.

 View Test Case Results

7-7

The Comparison tab appears and plots the signal comparison.

7 Test Manager Results and Reports

7-8

To see an example of creating a test case and viewing the results, see “Test Model Output
Against a Baseline” on page 6-2.

 Export Test Results and Generate Reports

7-9

Export Test Results and Generate Reports

In this section...

“Export Results” on page 7-9
“Create a Test Results Report” on page 7-10
“Generate Report Using Microsoft Word Template” on page 7-10

Once you have run test cases and generated test results, you can export results and
generate reports. Test case results are all contained in the Results and Artifacts pane.

Export Results

Test results are not saved with the test file. To save results, select the result in the
Results and Artifacts pane, and click Export on the toolstrip.

• Select complete result sets to export to a MATLAB data export file (.mldatx).

• Select criteria comparisons or simulation output to export signal data to the base
workspace or to a MAT-file.

7 Test Manager Results and Reports

7-10

Create a Test Results Report

Result reports contain report overview information, the test environment, results
summaries with test outcomes, comparison criteria plots, and simulation output plots.
You can customize what information is included in the report, and it can be saved in
three different file formats: ZIP (HTML), DOCX, and PDF.

To generate a report:

1 Select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case in the Results and Artifacts

pane.

Note: You can create a report from multiple results sets, but you cannot create a
report from multiple test files, test suites, or test cases within results sets.

3 From the toolstrip, click Report.
4 Choose the options of what to include in the report.
5 Select the File Format to save the report as.
6 Click Create to generate the report.

Generate Report Using Microsoft Word Template

If you have a MATLAB Report Generator™ license, then you can create reports from a
Microsoft Word template. The report can be generated to a Microsoft Word document or
PDF. The report generator in Simulink Test fills in information into rich text content
controls in your Microsoft Word template document. For more information on how to
use rich text content controls or customize part templates, see the MATLAB Report
Generator documentation.

In the Microsoft Word template, you can add rich text content controls. Each Simulink
Test report section can be inserted into the rich text content controls. The control names
are:

• ChapterTitle — report title
• ChapterTestPlatform — version of MATLAB used to execute tests
• ChapterTOC — test results table of contents
• ChapterBody — test results

 Export Test Results and Generate Reports

7-11

For example, the chapter title rich text content control appears in the Microsoft Word
template as:

To change the control name, right-click the rich text content control and select
Properties. Specify the control name, ChapterTitle or any other name, in the Title
and Tag field.

To generate a report from the test manager using a Microsoft Word template:

1 In the test manager, select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case in the Results and Artifacts

pane.
3 From the toolstrip, click Report.

7 Test Manager Results and Reports

7-12

4 Choose the options of what to include in the report.
5 Select DOCX or PDF for the File Format.
6 Specify the full path and file name of your Microsoft Word template.
7 Click Create to generate the report.

 Results Sections

7-13

Results Sections

In this section...

“Summary” on page 7-14
“Test Requirement” on page 7-14
“Errors” on page 7-15
“Logs” on page 7-15
“Notes” on page 7-15
“Parameter Overrides” on page 7-15

Information about test case result sections is outlined here. Double-click a test case
results in the Results and Artifacts pane to open a results tab and view all of the test
case result sections. A baseline test case result is shown as an example.

7 Test Manager Results and Reports

7-14

Summary

The Summary section includes the basic test information and the test outcome.

Test Requirement

A list of any test requirements linked to the test case. See “Requirements” on page 6-22
for more information on linking requirements to test cases.

 Results Sections

7-15

Errors

These are simulation errors that are captured from the Simulink Diagnostic Viewer.
Errors from incorrect information defined in the test case and callback scripts are also
shown here.

Logs

These are simulation warnings that are captured from the Simulink Diagnostic Viewer.

Notes

You can include any notes about the test results here. These notes are saved with the
results.

Parameter Overrides

A list of any parameter overrides specified in the test case under Parameter Overrides.
If there are no parameter overrides specified, then this section is not shown in the results
summary.

